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1 Introduction 
We have had several clients approach us regarding how best to create a holistic information security 

program as they spin up a new-to-them Kubernetes infrastructure for the first time. Particularly for 

regulated entities, this can seem like a significant challenge; given the rapid changes in 

infrastructure that Kubernetes makes possible, how can organizations ensure that appropriate 

security controls are still in place? 

This paper provides several specific recommendations around securing Kubernetes itself---that is, 

securing the control plane which provides container orchestration services to the cluster. In our 

experience, however, organizations that approach us with questions around “Kubernetes security” 

have more material concerns around “containerized security”—that is, creating effective security 

controls that take into account their newly-containerized applications, regardless of what 

orchestration layer (Kubernetes, OpenShift, or others) is being used. Therefore, in addition to 

recommendations around security of the control plane, we provide the following six major 

recommendations to secure an organization’s containerized production systems: 

1. Automated Testing 

2. Private Registry 

3. Hardened Base Images 

4. Continuous Integration/Deployment 

5. Centralized Production Monitoring 

6. Container-Specific Incident Response Tooling 

This is not a complete guide to Kubernetes or containerized security; many other organizations have 

published important work in this field, and we have no wish to duplicate it. In particular, we 

recommend that organizations spend time studying best practices, including the CIS Benchmarks1 

and other standardized recommendation sets for Kubernetes, before committing to a containerized 

infrastructure. 

Throughout this document, we name both paid and open-source products as examples of particular 

functionality. We have not evaluated, and do not endorse, these products; companies needing these 

capabilities should make their own evaluation of relevant features, costs, and security benefits. 

 
1 https://www.cisecurity.org/cis-benchmarks/  

https://www.cisecurity.org/cis-benchmarks/
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2 Control Plane Security 
The Center for Internet Security provides CIS Benchmarks,2 available under a Creative Commons 

license, which contain excellent baseline configuration guides for a variety of software. For 

Kubernetes, the version 1.6.1 Benchmark (applicable to Kubernetes 1.18) contains well over 250 

pages of information, including 58 automated and 28 manual controls applicable to the primary 

control nodes, and 10 automated and 13 manual controls applicable to worker nodes to achieve 

Level 1 compliance. (Automated controls are those verifiable with configuration scanning tools; 

manual controls are those that are not verifiable in an automated fashion.) 12 additional controls 

provide Level 2 compliance, some of which may be desirable, though Level 2 controls often come 

with certain negative effects upon the utility of the cluster. Since such a well-written basic resource 

exists, this section will focus on controls that are inadequately covered by CIS.  We recommend that 

anyone implementing Kubernetes in production implement all Level 1 controls in any final 

deployment unless they have specific operational contraindications that outweigh the security 

benefits. The Level 2 set should be considered best practices, but not requirements if they adversely 

impact operational abilities (as many will, depending on your particular context). 

Authentication: Authentication for human users to the Kubernetes cluster can be difficult to manage 

at scale; to avoid security pitfalls, it is essentially required to use an external user store that can 

communicate with Kubernetes via OpenID Connect.3 Most companies either have an identity store 

that includes OpenID Connect (for instance, Google Workspaces) or can set up an intermediate 

OpenID Connect provider to communicate with their primary identity store. Once the Kubernetes 

cluster is integrated with the identity store, ensure that access control groups (e.g., 

ClusterRoleBinding, RoleBinding) are bound to groups managed in the identity store; this will 

decrease the complexity of creating true role-based access control (RBAC) in the Kubernetes 

clusters. 

Secrets: Kubernetes Secrets4 are the built-in system for managing sensitive data such as TLS private 

keys, OAuth tokens, and the like. Unfortunately, despite the name, Kubernetes Secrets are not well-

protected by default; they are simply base64-encoded to prevent avoidable escaping and newline-

type issues. Kubernetes does provide optional encryption at rest5 for secrets, and basic authorization 

support for secrets as part of its larger RBAC system; however, due to the implementation of 

encrypted secrets and the human-opaque appearance of base64 encoding, human error frequently 

results in unencrypted secrets in practice even when the native encryption is intended. To provide 

more robust and verifiable secret protections (including usable separate authentication and 

authorization schemes for human versus automated access), consider using a dedicated secrets 

management solution such as HashiCorp Vault6 if appropriate. 

 
2 https://www.cisecurity.org/cis-benchmarks/  
3 https://kubernetes.io/docs/reference/access-authn-authz/authentication/#openid-connect-tokens  
4 https://kubernetes.io/docs/concepts/configuration/secret/  
5 https://kubernetes.io/docs/tasks/administer-cluster/encrypt-data/  
6 https://www.vaultproject.io/  

https://www.cisecurity.org/cis-benchmarks/
https://kubernetes.io/docs/reference/access-authn-authz/authentication/#openid-connect-tokens
https://kubernetes.io/docs/concepts/configuration/secret/
https://kubernetes.io/docs/tasks/administer-cluster/encrypt-data/
https://www.vaultproject.io/
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Scheduling: Kubernetes uses its scheduling engines to assign workloads to appropriate worker 

nodes, including both compute and storage (Persistent Volume Claims). Kubernetes has the ability to 

maintain a single cluster that has worker and storage nodes with different security levels (for 

instance, running some workers on dedicated hosts, or using Persistent Volumes with differing 

resilience configurations) and to assign workloads appropriately based on labeling. However, 

ensuring that high-security workloads are assigned to high-security nodes is complex in practice, and 

requires that labels be assigned correctly 100% of the time, imposing a difficult (and excessively 

manual) process upon engineering teams. To provide a more robust solution, production 

deployments should use separate Kubernetes clusters for workloads that need substantially 

different underlying security arrangements. For instance, if a company maintains both regulated and 

unregulated workloads, it should either run all workloads on clusters conforming to the regulated 

level of security, or separate the workloads into separate clusters, rather than attempting to 

maintain perfection when assigning work to different security levels within one cluster; to do 

otherwise courts disaster with little operational benefit. 

Deploy-Time Security: Kubernetes provides two major types of internal controls for security around 

the container deployment event: Admission Controllers and Pod Security Policies. Admission 

Controllers perform certain checks within the API Server binary before a deployment can proceed, 

and are configured at the API Server startup. The default configuration specifies five Admission 

Controllers: 

7. NodeRestriction: Prevents workloads from modifying certain attributes that control how they 

are deployed. 

8. AlwaysPullImages: Ensures that containers are only started by users with the permissions to 

access the underlying container image; in addition, ensures that containers are not started 

based on outdated images. 

9. ServiceAccount: A default configuration that provides the interfaces necessary for non-

human interaction with the API Server. 

10. NamespaceLifecycle: Ensures that namespaces must exist and not be in the middle of 

deletion if a new workload is started in them. 

11. EventRateLimit: Allows administrators to configure rate limiting on API events (e.g., starting 

workloads). 

These Admission Controllers are excellent as a baseline, but as one moves toward production-ready 

clusters, it is worth examining the full list of Admission Controllers7 to check for others that may be 

useful depending on specific details of how the cluster is configured, such as CertificateSigning, 

ImagePolicyWebhook, and SecurityContextDeny. 

Pod Security Policies (PSPs) specify additional requirements specific to creating pods. It is common 

to create PSPs that allow privileged mode; these should not ever be used in production. Privileged 

mode allows a container to do nearly anything that its host node could do. It is the containerization 

equivalent of running software as root and has the same substantial downside—that an attacker who 

is able to exploit the software now has full root privileges. Where there is a need for a container to 

 
7 https://kubernetes.io/docs/reference/access-authn-authz/admission-controllers/  

https://kubernetes.io/docs/reference/access-authn-authz/admission-controllers/
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take a specific action that is ordinarily denied to unprivileged containers, such as manipulating the 

host clock, the pod specification can assign a specific capability8 to the container. The difference is 

substantial; allowing a container to run as privileged is the equivalent of giving twenty-seven 

capabilities to that container, plus some additional abilities. There are few, if any, reasons that 

privileged containers should ever be run in production or staging environments; the limited situations 

in which more-than-default access is necessary can be resolved by capabilities, which should be 

used as needed. 

Configuration Source Control: Kubernetes can be configured in a variety of ways, including various 

graphical user interfaces, the first-party command-line interfaces (kubectl and kubeadm), and YAML 

configuration files. Regardless of how a given configuration was first created, every Kubernetes 

configuration can be output back to a YAML file. We strongly recommend that companies deploying 

Kubernetes configure its clusters, workloads, and settings using a YAML-first configuration 

methodology wherever possible; when this is not possible, they should use other tools as needed, 

then output the resulting configuration to YAML files. These YAML files should be stored in source 

control. This will ensure that the cluster, or the workloads running on it, does not “drift” from its 

original configuration in a way that is not visible without direct interrogation of the cluster. This, in 

turn, will help to achieve compliance and security goals, as well as to ensure that should a cluster or 

workload need to be recreated, it can occur quickly and without the need for people to remember 

post-deployment changes.  

Local Deployment Sources: For much the same reasons as storing configurations in source control, 

we recommend that companies disallow Kubernetes deployments from sources not kept within their 

own systems—that is, that they deploy only container images stored in their private container 

repository (rather than deploying using, e.g., public Docker Hub images), and that they not use 

externally-hosted Helm charts or similar shortcuts to deploy resources onto the cluster. This is not 

because we believe that the public resources are inherently untrustworthy; instead, this 

recommendation is to allow cluster administrators to be able to view and recreate not just what is 

currently running in the cluster, but what was previously running at any given point in time. This 

enables security and audit teams to ensure that they have all relevant data when investigating 

software defects or security incidents. This point-in-time audit capability is very straightforward if 

everything is preserved in local source control, but difficult, or impossible, when deploying straight 

from the Internet, as third parties may change files without notice. For more on this, see the following 

section on private registries. 

 

 
8 https://kubernetes.io/docs/tasks/configure-pod-container/security-context/#set-capabilities-for-a-container  

https://kubernetes.io/docs/tasks/configure-pod-container/security-context/#set-capabilities-for-a-container
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3 Container Security: Automated Testing 
The security of an application deployed in Kubernetes is reliant on being able to leverage the 

particular advantages Kubernetes provides (such as rapid redeployment) against the disadvantages 

of Kubernetes and containerization more broadly (such as an additional layer of abstraction with its 

own patching and vulnerability management needs). To make this possible, it is critical to have 

robust, automated tests in place that can provide a deployable/not deployable status for a given 

container, including both the application and the container OS. 

To be effective in aiding deployment, these tests should be integrated into the build pipeline, and 

should complete quickly enough to allow many cycles per day, when necessary, of bugfixing and 

retesting; as a rule of thumb, 30 minutes is a good maximum wall-clock time. If a test suite requires 

more time than this to execute, allocating additional compute resources to the test environment may 

be necessary. Alternately, identifying a minimum set of tests from the suite that can be used for a 

basic “smoke test”9 and running only those during the build process may be preferred; the longer 

test suite can still be run periodically (e.g., daily) to ensure that all unit and regression tests continue 

to pass. 

If your application does not have sufficient automated, reliable testing to achieve this goal at this 

time, our recommendation would be to invest in building tests before investing in containerized 

deployment. The investment in testing will help to ensure that you can leverage the maximum 

benefits from containerized or other rapid deployment paradigms confidently, and without testing, 

most of the following recommendations will be unworkable. 

Recommendation 

Build a targeted suite of automated smoke tests capable of determining whether your application(s) 

are working properly, and use them as a central part of an automated build process. 

 
9 https://en.wikipedia.org/wiki/Smoke_testing_(software)  

https://en.wikipedia.org/wiki/Smoke_testing_(software)
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4 Container Security: Private Registry 
A registry is the repository from which Kubernetes pulls specific container images. There are many 

public registries; the largest is Docker Hub,10 due to its creation by the same team that built Docker, 

but GitHub,11 GitLab,12 and other services provide public registries as well. They are the container 

implementation of open-source package hosting, and they are extraordinarily helpful for quickly 

testing containerized software. 

However, in a context in which security, privacy, or data protection matter, they can be problematic. 

First, like many13 package14 registries,15 public container registries provide a high-value target for 

attackers---but the security of an individual package (rather than the platform itself) is up to the 

security of an individual account, leading to a potential for widespread compromise due to an 

account takeover (ATO) attack on a single developer. In addition, an issue for container registries 

specifically is that a container contains a significant amount of software other than the principal 

object of the container.  

For instance, the Docker Hub node images16 may contain, depending on selected tags, Alpine Linux 

or any of several different versions of Debian. While the Node project updates its containers 

frequently, many developers may not rebuild containers outside their own software’s release 

cadence. This means that if a software project only publishes new releases every six months, the 

published container image provided by the project may not have received patches for its container 

OS for six months; this can lead to making old, well-known vulnerabilities unintentionally available 

and exploitable in production systems due to the “hidden” unpatched system. 

Recommendation 

We recommend that any Kubernetes deployment deploy from a private registry exclusively (including 

network rules preventing accidental pulls from Docker Hub). Container images should, as described 

in the next section, be built by a trusted build process before being pushed to the private registry. 

 

 
10 https://hub.docker.com/  
11 https://github.com/features/packages  
12 https://docs.gitlab.com/ee/user/packages/container_registry/  
13 https://www.helpnetsecurity.com/2019/08/21/backdoored-ruby-gems/  
14 https://eslint.org/blog/2018/07/postmortem-for-malicious-package-publishes  
15 https://threatpost.com/supply-chain-hack-paypal-microsoft-apple/163814/  
16 https://hub.docker.com/_/node  

https://hub.docker.com/
https://github.com/features/packages
https://docs.gitlab.com/ee/user/packages/container_registry/
https://www.helpnetsecurity.com/2019/08/21/backdoored-ruby-gems/
https://eslint.org/blog/2018/07/postmortem-for-malicious-package-publishes
https://threatpost.com/supply-chain-hack-paypal-microsoft-apple/163814/
https://hub.docker.com/_/node
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5 Container Security: Hardened Base Images 
Container images, like virtual machine images and bare-metal images before them, should be built 

on top of a trusted base image. This practice ensures that general hardening guidelines are applied 

to all systems in production, provides stability for tools in use and supporting infrastructure, and 

ensures reasonable upgrade pathways are available to enable patching.  

When moving applications to a containerized platform, it is common to adopt a “lift and shift” 

mentality and make only the smallest possible changes to the application. This leads to the use of 

full operating systems, such as Red Hat Enterprise Linux (RHEL), Ubuntu, or Debian, inside 

containers. In keeping with the general hardening methodology of “do not install unnecessary 

software or services,” and owing to the unique symbiosis between a running container and its host 

machine’s operating system, it is preferable to build container images on top of a minimal base OS, 

rather than on a full-featured OS. Alpine Linux17 is often used for this purpose, but alternatives 

include Photon OS,18 which is maintained by VMWare, Fedora CoreOS,19 or others provided by 

individual container distributions.  

To illustrate the difference in potential for exploitation, a RHEL NodeJS 12 base image (rhscl/nodejs-

12-rhel7:1-24) is 534.3 megabytes in size; the most directly equivalent Alpine-based image 

(including NodeJS version 12, as the RHEL image does), node:12-alpine3.12,20 is just 89.3MB. That 

83% reduction in size translates not simply to significant bandwidth savings both intra-cluster (as 

images are transmitted from the control plane to worker nodes) and extra-cluster (when container 

images are pulled from the registry), but a significant reduction in how much code is available for 

bugs and, in turn, exploitation by attackers.21  

While there are potentially some pieces of software that require more features from a container than 

Alpine can provide, there are many container-specific “lightweight” OS distributions available to 

choose from, any of which might meet the needs of a particular piece of containerized software, and 

all of which would, inherently, require less hardening than a full OS installation. 

Recommendation 

We recommend that all container images deployed in production be built on a container-specific OS 

designed for minimal attack surface. They should also be hardened following best practices for the 

specific OS; this hardened image should then form the base image layer for application and other 

necessary containers built for and deployed to production. 

 

 
17 https://alpinelinux.org/  
18 https://vmware.github.io/photon/  
19 https://getfedora.org/coreos?stream=stable  
20 See https://hub.docker.com/_/node;  
21 To be clear, we are not saying that there are known vulnerabilities in containerized RHEL; instead, we are 

applying the software security adage of “the most secure code is the code that is no longer shipped.” We would 

make the same recommendation for any other full-featured OS being used inside a container. 

https://alpinelinux.org/
https://vmware.github.io/photon/
https://getfedora.org/coreos?stream=stable
https://hub.docker.com/_/node
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6 Container Security: CI/CD 
Continuous integration (CI) is the practice of continually building and testing software to ensure that 

software defects are detected and eliminated in a rapid, responsive cycle, rather than queuing a 

significant number of changes to await testing all at once. CI is most-often applied to first-party code 

(i.e., the software that an organization writes itself), which creates an exceptionally robust and 

flexible deployment paradigm; establishing this is based on a robust suite of smoke tests (as 

discussed above) to ensure that when the automated tests say that the software under test has 

passed, it can be deployed without further intervention. (Whether this Continuous Deployment (CD) is 

adopted or not depends upon the needs of the organization, but the CI system’s output should be 

immediately deployable.)  

In addition to first-party application testing, the same CI idea can be applied to ensuring that base 

container images are rebuilt frequently (e.g., daily, or multiple times per day), including the 

installation of available software patches (via “apt update && apt upgrade” or similar) and 

appropriate hardening steps (as discussed above). Given this rapidly updated base image, an 

organization’s dependent container images, containing its own code, can be rebuilt on top of the 

base image just as frequently as the base image is updated. Combined with automated testing, this 

would allow an organization to move beyond “approved base container image versions” and simply 

apply all available patches as soon as they are published by the operating system maintainer. 

Potential incompatibilities will be caught by the testing system and can be addressed by humans as 

needed; with continuous integration, however, this will take the form of small bug fixes more 

frequently, rather than the need to fix an enormous number of bugs all at once, when a new OS 

version is approved by the appropriate parties. 

Whether or not Continuous Deployment (CD) is adopted, the organization should restrict production 

deployments such that they can only be made by the automated system (with or without human 

initiation). This requirement can be enforced with continuous monitoring for “rogue” containers (see 

the following section on monitoring) to ensure that no such containers are allowed to persist. This 

ensures that only containers built on images that meet organizational security requirements can 

exist in the production environment. This also has the beneficial effect of providing another point of 

multiparty control to SDLC-driven code deployment compliance frameworks, since no single 

employee will be able to deploy code to production without the required approvals. 

Recommendation 

We recommend that organizations with sufficient testing capabilities adopt both CI and CD for all 

systems; in the alternative, adopting CI plus human-initiated deployment (where the automated tools 

handle all aspects of deployment, but the command is given by authorized personnel) is acceptable 

if organizational requirements prohibit automated deployment. In either case, monitoring should be 

adopted to ensure that only container images built by the CI system can be run in production. 
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7 Container Security: Production Monitoring 
Many of the general rules of production monitoring apply in equal force to monitoring a containerized 

infrastructure; it is critical that as an organization moves to Kubernetes, it does not disregard these 

principles. 

First, implement universal, centralized logging. Every Kubernetes node (both primary and worker) 

and every container should be sending logs to a centralized analysis platform where monitoring and 

alerting can occur. Two typical solutions for this are Splunk22 and Elastic Stack;23 however, given the 

latter’s recent pivot to licensing that is hostile to intellectual property,24 we no longer recommend it. If 

an organization has an existing centralized log management and analysis platform, there is 

absolutely no need to change it; simply make sure that all logs flow to it. 

Second, use production-wide monitoring to look for improperly deployed resources. As discussed in 

the section above, no containers should ever be deployed other than by the automated systems, and 

containers should be destroyed and redeployed frequently. In a public cloud environment, tools like 

Cloud Custodian25 can implement rules like this; in private datacenters, developing custom tooling 

may be preferable.  

Third, use the same type of configuration monitoring tools to look for improper configurations at the 

orchestration layer. If desirable, tools like the Tenable suite26 can add another layer of configuration 

monitoring to prevent unintended drift. It is likely that some points of configuration will require 

custom scripted or manual checks to verify, particularly with regard to checking that intra-

Kubernetes networking is set to “deny by default” at all times, with specific business reasons given 

for each allow rule.27 

Finally, embrace immutable infrastructure. Containers are spawned from images which are built by 

an automated process; they should not need to be manipulated manually (e.g., SSHed into, or having 

manual commands run via Kubernetes exec) as part of the deployment lifecycle. Debugging can take 

place, in most cases, by using the logs emitted by the container and simulation on development 

machines. Where it becomes necessary to run commands on a container in production, the 

container should be automatically marked for destruction in a short time period so that an accidental 

side effect of the commands cannot negatively affect production traffic. This also helps to prevent 

development of the post-deployment-configuration antipattern, where it requires less effort on the 

part of the relevant engineer simply to make changes on running containers, rather than making the 

change to the image build process—which creates siloed knowledge and leads to increased 

debugging complexity. 

 
22 https://www.splunk.com/  
23 https://www.elastic.co/elastic-stack  
24 https://aws.amazon.com/blogs/opensource/stepping-up-for-a-truly-open-source-elasticsearch/  
25 https://cloudcustodian.io/  
26 https://www.tenable.com/products/tenable-io or similar products. 
27 This would be a container-specific reflection of the common firewall rules control required by PCI-DSS 

(1.2.1), SOC 2 (TSP CC6.6), ISO 27001 (A.13.1.3) NIST 800-53r5 (SC-7(11)(21)(25)), etc. 

https://www.splunk.com/
https://www.elastic.co/elastic-stack
https://aws.amazon.com/blogs/opensource/stepping-up-for-a-truly-open-source-elasticsearch/
https://cloudcustodian.io/
https://www.tenable.com/products/tenable-io
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 Container Compliance Monitoring 
In addition to preserving and centralizing logs from all running containers, as discussed above, an 

optional, but useful, monitoring technique is to use tools to find differences between running 

containers. If ten containers, spawned from the same image, are running in production and one is 

different from the others in any way, it is reasonable to assume some security-impactful failure has 

occurred (whether it is a software defect causing a resilience failure or an active exploitation). 

Accordingly, periodically (but frequently; for instance, every 5-10 minutes) use diffing tools to 

examine similar running containers and, when an outlier is found, trigger containerized incident 

response tools (detailed below) and respawn a fresh container from the base image. 

One such tool is built into Docker,28 though the Docker command-line tools will soon be removed 

from a default Kubernetes installation.29 (They can of course still be installed separately.) Some 

incident response tools for containerized workflows also include this functionality.30 Alternately, it 

may be more useful to develop customized in-house tools to achieve this. 

Recommendation 

Centralized, monitored logs (with appropriate alerting) are table stakes for an operational security 

posture, and that requirement does not change in a containerized infrastructure. Any organization 

not already doing this should address it with the highest possible priority, as lacking logs means that 

no effective incident response or even performance analysis can exist. 

 
28 https://docs.docker.com/engine/reference/commandline/diff/  
29 https://kubernetes.io/blog/2020/12/02/dont-panic-kubernetes-and-docker/  
30 https://github.com/coinbase/dexter  

https://docs.docker.com/engine/reference/commandline/diff/
https://kubernetes.io/blog/2020/12/02/dont-panic-kubernetes-and-docker/
https://github.com/coinbase/dexter
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8 Container Security: Incident Response 
The general virtual infrastructure incident response flow is as follows: 

1. Quarantine the affected infrastructure (disable its ability to send or receive information 

to/from other systems or the Internet). 

2. Obtain useful data from the quarantined infrastructure. 

3. Terminate the affected infrastructure and respawn unaffected infrastructure, using 

monitoring to watch for attempted re-exploitation until the underlying defect has been found 

and fixed. 

4. Once the defect has been fixed, redeploy all infrastructure that contained the vulnerability, or 

which may have been exposed to harm from the exploited system. 

Given the rapid spawning and reaping of containerized infrastructure, using tooling for incident 

response and forensics is even more critical than in a virtual machine-based infrastructure. If a 

container’s maximum lifetime is measured in minutes or hours, manual processes will not be able to 

keep pace.31 What specific tooling to use will be determined by what integrates best with an 

organization’s existing processes and tools. Regardless of what tools are selected, it is critical to 

establish a runbook for the security operations team that covers how to use the tools to collect 

relevant information in a short amount of time, and how to refer the investigation to appropriate 

personnel (from security, development, or SRE) to track down the issue and remediate it in a timely 

fashion. 

Recommendation 

Establish and frequently test containerized incident response runbooks, including specific and 

customized tooling and commands, to ensure that your security operations team can rapidly handle 

a containerized incident. 

 
31 For more background on this, an excellent (if somewhat dated) conference presentation is available at 

https://www.youtube.com/watch?v=I1HU67Vd7ec . 

https://www.youtube.com/watch?v=I1HU67Vd7ec


 

PAGE 14 OF 16 

9 Stretch Goal: Automated Vulnerability 

Management and Remediation 
Some heavily-regulated organizations are required to use vulnerability scanning tools (such as Clair32 

or Sysdig Secure33) to ensure that “known vulnerabilities”—defined as vulnerabilities for which a 

patch is available—are not present for longer than a defined period in their infrastructure. In a 

containerized environment, this has led to organizations scanning container images on build and at 

deploy, creating significant performance issues for automatic scaling, and then periodically during 

runtime. However, given a private registry (whether run using the Docker registry image34 or a paid 

product such as JFrog Artifactory35), an automated deployment system (such as Jenkins36 or GitHub 

Actions37), and a vulnerability scanning system, an organization can create an extremely effective 

control system while removing these scanning-related performance problems by ensuring that only 

approved container images can be deployed, and then putting tight controls around what “approved” 

means in this context. 

In summary, once a continuous integration system is, as discussed above, constantly rebuilding, 

checking, and tagging new versions of container images as ready for deployment, an organization 

can move the performance-intensive container vulnerability scan to “scan on build” exclusively, and 

eliminate “scan on deploy” and “scan during runtime.” This would remove the performance penalty 

that scanning every image, every time it is deployed, imposes on starting new containers without 

sacrificing security. To prevent long-running containers from exceeding vulnerability constraints, use 

the production monitoring system to redeploy all long-lived containers automatically; the 

redeployment will use the newer approved image with, once again, no harms to security. 

An example will help illustrate how this would work in practice. For the sake of discussion, we will say 

that existing security controls at a hypothetical company require that no package with a known 

vulnerability be used in production for more than 7 days (168 hours) after the release of a patch. 

With no automatic rebuilding of deployment container images, the hypothetical company currently 

needs to use a vulnerability scanner to scan at three separate points: 

1. at container build, to ensure that packages included in the build have no known 

vulnerabilities for which patches have exceeded the deadline; 

2. at container deploy, to ensure that packages in the deployed image have not exceeded the 

deadline between build and deploy time; and 

3. during runtime, to ensure that packages in the running container have not exceeded the 

deadline while they have been running. 

 
32 https://github.com/quay/clair  
33 https://sysdig.com/products/secure/  
34 https://hub.docker.com/_/registry  
35 https://jfrog.com/artifactory/  
36 https://www.jenkins.io/  
37 https://github.com/features/actions  

https://github.com/quay/clair
https://sysdig.com/products/secure/
https://hub.docker.com/_/registry
https://jfrog.com/artifactory/
https://www.jenkins.io/
https://github.com/features/actions
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Now contrast a continuous integration system, which rebuilds the base container image, and all 

container images dependent upon the baseline, every six hours.38 In general, then, a container image 

stored in a private registry and marked as the latest image will not contain a known vulnerability for 

which a patch has been available for more than six hours (plus the time it takes to actually build the 

container images). Should a patch cause a defect, it will be caught by the test suite running as part 

of the continuous integration and flagged for human intervention; as long as the fix is pushed to the 

code repository and picked up by the CI system within a reasonable amount of time (roughly, within 

six days), no image stored in the registry and marked as the latest image available will be able to 

exceed the 7-day control. This eliminates the need to scan at container deploy time (and suffer the 

significant hit to deployment performance). 

Since images will be rebuilt so frequently, the organization can use Kubernetes to remove and 

redeploy running containers frequently. This is made possible by the inherent ephemerality of 

containers and their extremely low start-up costs, once deploy-time scanning has been eliminated. If 

orchestration automatically redeploys any containers that have exceeded six hours’ runtime, no 

container in production will be more than twelve hours away from its build (and patching) under 

normal circumstances. If an image update was delayed due to a bug that required human 

intervention to fix, the control is still preserved; even if it takes six days for the fix to be identified, 

coded, and pushed to the code repository, there will still be sufficient time to allow a rebuild, 

redeploy, and reaping of all old containers before the seven-day deadline.39 Since running containers 

therefore cannot exceed the seven-day deadline, this removes the need to scan running containers 

for vulnerabilities (with the attendant performance penalty), while maintaining the regulatory 

controls. While the specific timings might change based on a company’s compliance requirements, 

an appropriate CI cadence and SLA for human bugfixes when needed can be constructed to ensure 

that the vulnerability scan’s performance hit only needs to be endured by the CI system, and by no 

other component of the stack. This increases resilience and performance when deploying and 

scaling systems, and provides effective, low-impact vulnerability management within a highly 

adaptable infrastructure. 

 

 
38 Once again, this is entirely reliant on automated, reliable smoke testing as discussed in an earlier section. 
39 This would be while relying on the periodic automatic redeployment; a human could of course trigger an off-

cadence rebuild and redeploy to decrease the time necessary for a fix to propagate from code repository to 

production while still utilizing the automated systems (and therefore not requiring a security exception). 
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10 Conclusion 
While containerized production with advanced, large-scale orchestration engines such as 

Kubernetes is relatively new, the security implications of containers are a reflection of existing best 

practices, rather than a complete rewrite. Using Kubernetes adds new levels of abstraction to core 

concepts like networking and storage, just as using virtual machines did when moving from bare 

metal production systems; however, the same core controls of protecting data at rest, data in transit, 

secrets, and access apply at each new level. In general, companies should feel comfortable with 

continuing their high-level security guidance even as the underlying technology changes. 
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